
Heraklit case study: retailer

Peter Fettke1,2r0000´0002´0624´4431s and Wolfgang Reisig3r0000´0002´7026´2810s

1 German Research Center for Artificial Intelligence (DFKI), Saarbrücken, Germany
peter.fettke@dfki.de

2 Saarland University, Saarbrücken, Germany
3 Humboldt-Universität zu Berlin, Berlin, Germany

reisig@informatik.hu-berlin.de

Abstract. The modeling method Heraklit is presented through a busi-
ness case study. The case study demonstrates how Heraklit can be
used to systematically model, abstract, compose and analyze computer-
integrated systems of business practice. Structural aspects, abstract de-
scriptions of data and objects, and behavioral models are integrated in
a novel way.

Keywords: systems composition · data modeling · behavior modeling ·
process modeling · composition calculus · algebraic specification · Petri
nets · Systems Mining

Preliminary remarks

What is Heraklit?

Heraklit is a method for modeling computer-integrated business systems. The
objective of Heraklit is outlined by the Heraklit memorandum [4]. The
systematic structure of Heraklit as well as the selection of the individual
concepts and their interaction are motivated by the Heraklit manual, which
is not yet available. The Heraklit tool supports the modeler in creating and
analyzing descriptive models, particularly extensive models that use overviews
and abstractions in addition to detailed representations of behavior. This tool
will be made available in the future.

What does this text offer?

For readers without previous knowledge, a comprehensive case study explains
how to construct Heraklit models. We model the central business processes of
a retailer and its business network partners, we show how they can be composed
and abstracted, and we describe their behavior. From the constructs of this case
study the reader can intuitively and easily understand the general concepts of
Heraklit.

cite as: Fettke, P.; Reisig, W.: Heraklit case study: retailer. 2020. – Heraklit
working paper, v1, December 21, 2020, http://www.heraklit.org

http://www.heraklit.org


How is the text structured?

The case study is divided into eight parts. Part I introduces the content of the
case study and the developed model. A Heraklit model is basically divided
into individual modules which are presented in part II. Part III explains how
data and objects are modeled in the case study. The concept of distributed runs
is introduced in part IV. The introduced concepts are transferred to schemata
to talk about arbitrary data, objects and runs in part V. Part VI then details
the individual modules in terms of their structure and behavior. The complete
model overview is shown in part VII, while part VIII explains how further views
on the complete model can be described.

I Content of the case study and the developed model

1 The retailer of the case study

A retailer sells articles to its customers via an online shop. No articles are sold
via other forms of distribution such as stationary retail, wholesale or agents.

The retailer has three types of business network partners:

– its customers: they send in orders; the retailer informs the customers about
delivery dates, et cetera;

– the supplier : the retailer reorders out-of-stock goods; the supplier delivers
ordered goods to the retailer;

– the freight forwarders: they receive packed freight from the retailer and de-
liver it to the customers.

The retailer itself is divided into three parts:

– The order management receives orders from customers, asks the inventory
management to confirm the availability of each ordered item and issues de-
livery orders to the warehouse. If necessary, the order management system
initiates partial deliveries.

– Inventory management keeps a list of the inventory in the warehouse. If an
item’s available quantity becomes too low, inventory management reorders
from the supplier and asks the warehouse to acknowledge the receipt of these
items.

– The warehouse packs ordered goods according to the delivery orders of the
order management and hands over the freight to a freight forwarder. It also
receives goods from the supplier, sorts them into the warehouse and notifies
the inventory management system that the goods have been received.

The retailer and its partners form a system that must function correctly as
a whole. For example, all ordered items should be delivered to a customer if
necessary, in partial deliveries. Conversely, only those articles that the customer
has ordered should be delivered. Within the retailer, inventory management
should only prompt the warehouse to deliver if the necessary articles are available
in the warehouse.

2



2 The Heraklit model for the retailer and its business network
partners

We construct a Heraklit model for the entire system, containing the described
retailer and its three business network partners. First we model the abstract
structure of the whole system and the three business network partners of the
retailer as Heraklit modules in the context of their principal interaction. This
is followed by a detailed and systematic presentation of the data and objects in
an abstract version. The representation on a schematic level is left to concrete
instantiations which specify how exactly customers, articles, goods, freight, et
cetera look. Finally, the behavior of the individual modules is represented in
the form of local steps and mathematical operations on the data and objects
involved.

The model leaves a number of decisions open. In particular, order manage-
ment

– can bundle available items in the warehouse into partial deliveries according
to particular choices;

– can select different goods in the warehouse for the same ordered item;
– does not determine which of the available freight forwarders will deliver.

Thus, the model precisely captures the aspects of trading operations de-
scribed in Section 1.

The model combines principles known and proven from algebraic specifica-
tions, Petri nets and the composition calculus. They are intuitively obvious, so
that no previous knowledge is required to understand the graphical model. At
the same time, the model is formal; thus the above-mentioned properties can
be formally formulated and proven in the model. Details will be given in the
Heraklit manual.

II The concept of a module

3 Heraklit modules

A real system generally consists of subsystems that are composed. The central
modeling concept is based on this obvious observation: A Heraklit module is
a model, graphically represented as a rectangle, with two essential aspects:

– Its interior : this can be freely chosen. It may consist only of the name of the
module, or show its structure or its dynamic behavior; and

– Its surface: this consists of a set of gates. Each gate has a label, which serves
as a caption. Each gate is represented graphically as a short line that starts
at the rectangle of the component and ends at the label of the gate.

The module in figure 1a shows how this works in detail, using the example
of the retailer: The interior of the retailer is shown inside the rectangle; here
we abstract completely from internal details and only write the name of the

3



(a) the retailer (b) the customers

(c) the supplier (d) the freight forwarders

Fig. 1: abstract Heraklit modules: the retailer and its three kinds of partners

module. The interface consists of five gates with the labels purchase orders (from
customers), messages (to customers), supplier orders (to the supplier), delivered
goods (from the supplier), and freight delivery (to freight forwarders).

Similarly, the modules of the figures 1b, 1c and 1d show the three types of
business network partner: customer, supplier and freight forwarder with their
respective gates. Figure 2 shows the three departments of the retailer, again as
Heraklit modules.

All Heraklit modules in figures 1 and 2 are abstract modules: Their interior
contains only the name of the module. Typically, however, the interior of a
Heraklit module shows details of its structure or behavior. The structure of a
module is often a composition of submodules.

Each gate of the modules in figures 1 and 2 is – intuitively formulated – an
entrance or an exit through which objects, documents, information, et cetera
flow. The direction of this flow helps to understand the behavior of the mod-
ule; we indicate it with an arrowhead. Such arrowheads – and other labels and
captions – are not part of the formal framework of Heraklit.

4 The composition of Heraklit modules

Subsystems of a large real system are reasonably formed in such a way that they
can be composed according to a fixed procedure and their composition returns
the original system. Heraklit follows this concept also for the composition

4



(a) the order management (b) the inventory management

(c) the warehouse

Fig. 2: abstract versions of the three departments of the retailer

of Heraklit modules. Technically, the composition L ‚M of two Heraklit
modules L and M is defined as a merger of equally labeled gates of L and M .
The merged element then remains inside L ‚M . The other gates of L and M
become gates of L ‚M .

Figure 3a shows an example: The order management and the inventory man-
agement from figures 2a and 2b both have gates with the label requested reserva-
tions. In figure 3a the two gates merge to one element inside order management‚
inventory management. The same applies to the two gates with the label confir-
mation of availability. The other three gates of order management and the other
two gates of inventory management then form the interface of the composed
system order management ‚ inventory management.

Figure 3b depicts the system

inventory management ‚ warehouse.

Both composed modules can now be extended by the missing third depart-
ment of the retailer. As a result, the following two modules can be composed:

porder management ‚ inventory managementq ‚ warehouse

and

order management ‚ pinventory management ‚ warehouseq.

5



(a) the composition ordermanagement ‚ inventorymanagement

(b) the module inventorymanagement ‚ warehouse

(c) the retailer, defined as
ordermanagement ‚ inventorymanagement ‚ stock

Fig. 3: composition of departments

These two modules are identical; therefore, in figure 3c the brackets can be
omitted.

6



(a) the composition customers ‚ retailer ‚ supplier ‚ freightforwarder

(b) the composition customers ‚ ordermanagement ‚ inventorymanagement ‚
warehouse ‚ supplier ‚ freight forwarder

Fig. 4: the retailer in the context of its business network partners

Some details of the definition of composition are described in the appendix
and particularly in the Heraklit manual. Two properties of the Heraklit
composition operator are central: It is

– total, so any two Heraklit modules L and M can be composed to the
Heraklit module L ‚M , and it is

– associative, so for any module L, M and N : pL ‚Mq ‚ N “ L ‚ pM ‚ N);
therefore, you never have to parenthesize.

Both properties are fundamentally important for a useful composition oper-
ator for modules and thus for models of real systems.

Figure 4a composes the retailer module with the modules for the customers,
the suppliers and the freight forwarders to the overall module of the case study.
The modules involved are then submodules of the overall module.

Each gate of the retailer module is by design also a gate of one of its three
submodules. Therefore, in figure 4a the retailer module can be replaced by its

7



Fig. 5: Composition of abstractions: rcustomerss ‚ rretailers ‚ rsuppliers ‚
rfreight forwarderss

three submodules, as in figure 4b. As explained at the end of section 3, an
arrowhead at a gate intuitively indicates a flow direction. Such arrowheads are
also intuitively useful in composed modules.

5 Abstraction of Heraklit modules

The module in figure 3c is not abstract, but has an inner structure. If one
abstracts from this inner structure, one obtains figure 3a, the abstract version of
the retailer. In general, each module has its uniquely determined abstract version:
The surface remains the same, but the interior is deleted except for the name of
the module. For a module L, rLs denotes its abstract version. Figure 3c is named
“retailer”; therefore – strictly speaking – figure 1a must be named “[retailer ]”.
But now one can see that the modules in figure 1 are all abstract; therefore, the
representation remains unique even without the abstraction operator r¨s. If one
forms a module as a composition of given modules and would like to refer to
the abstract version, the abstraction operator removes ambiguity. An example
is shown in the comparison of figure 4a with figure 5.

The transition from a module L to its abstract version rLs can be reversed
and L can be seen as one of many possible refinements of rLs. For example, figure
3c is a refinement of figure 1a. If in a composed module L “ L1 ‚ L2 ‚ ... ‚ Ln a
submodule Li is refined or abstracted, nothing changes in the other submodules.

The three submodules depicted in figure 3c will be further refined later, as
will the business network partners given in figure 1.

8



(a) the system from the customer’s
perspective: customers ‚ rretailer ‚
supplier ‚ freight forwarder s

(b) the system from the perspective of
the freight forwarders: rcustomers ‚
retailer ‚ suppliers ‚ freight forwarders

(c) the system from the suppliers’
perspective: [customers ‚ retailer ‚
freight forwarderss ‚ supplier

Fig. 6: the system from the perspective of the three business network partners

6 Views

Abstraction and composition of submodules result in different views of the overall
system. In particular, each business network partner has its own view, namely
the abstraction of the other composed submodules. Figure 6 depicts these three
views.

A module (at any level of detail) “sees” the rest of the system generally in
two parts: the submodule on its left and the one on its right. Figure 7a shows
this perspective of the retailer. But each of its submodules also has its own
perspective, as shown in figures 7b, 7c and 7d.

III Data and objects in Heraklit models

7 Data, things, types, multisets

In order to show the expressiveness of Heraklit, we examine some data aspects
of the case study in more detail. An order consists of a customer (more precisely:
a customer name) and an article list. This in turn is a set of items. And each
item consists of an article and the number of ordered units.

9



(a) perspective of the retailer:
[customerss ‚ retailer ‚ rsupplier ‚
freight forwarderss

(b) perspective of inventory
management:
rcustomers ‚ ordermanagements ‚
inventorymanagement ‚
rwarehouse ‚ freight forwarderss

(c) perspective of the order
management:
[customerss‚order,management‚
rinventorymanagement ‚
warehouse ‚ supplier ‚
freightforwarderss

(d) perspective of the warehouse:
[customer ‚ ordermanagement ‚
inventorymanagements‚warehouse‚
rsupplier ‚ freight forwarderss

Fig. 7: perspectives of the retailer and its departments

Customer names, articles, article positions and article lists are data; one can
display them in a catalog, send them digitally, print them on paper, et cetera.
In particular, they can be processed in digital form by a computer.

In addition, there are concrete, real-world things, in the example the shoes,
pants, shirts and hats, that are the goods that the supplier sends to the ware-
house, which the warehouse packs and hands over to the freight forwarders as
freight, which is then delivered to the customers.

Data and things have very different properties: A data element such as an
article list can be easily copied or disassembled; an object cannot. One can
do little more with an object than bundle it together with others in freight,
transport it from place to place and then open the bundle again. From this
follows an interesting property that data does not have: An existing thing, for

10



example a hat, is always in exactly one place. Data and things are objects, which
Heraklit represents in the same formalism.

In the systematic structure of Heraklit, objects are elements of sets. They
are, therefore, not to be understood in the special sense of object-oriented mod-
eling or programming. Often objects are multisets. In a multiset, an element can
occur more than once: for example, a delivery for an order can contain two hats
and three pairs of shoes without distinguishing between the two hats or the pairs
of shoes. We write this order as multiset rhat, hat, shoes, shoes, shoess. Formally,
a multiset with elements from a set A is a mapping M : A Ñ N, which assigns
each element of A its number of occurrences in M; in the example, Mphatq “ 2
and Mpshoesq “ 3.

Multisets L and M of a set A can be added:

pL`Mqpaq :“ Lpaq `Mpaq,

multiplied by a scalar (a natural number n)

pn ¨Mqpaq :“ n ¨ pMpaqq,

and compared with each other:

L ďM :“ for all a P A : Lpaq ďMpaq.

The power set P pMq is the set of all sets N with N ď M . MpAq is the set
of all multisets over A.

Finally, we use predicates: A predicate p either applies to an element, or it
does not. For a set M we write ppelmpMqq if p applies to every element of M .

Figure 8 summarizes the notations used in this document.

8 The structure S and the schema of the retailer

The model of the retailer consists of four different types of objects:

– basis sorts: these are customers, articles, dates, goods, freight forwarders;
– derived sorts: an article position consists of an article and a quantity, an

article list is a multiset of article positions, an article set is a multiset of
articles, and a goods set is a multiset of goods;

– constants that explicitly appear in the model: specific items, customers, and
initially listed items, goods, and freight forwarders;

– functions, which relate basic and derived sorts to each other: Each article
position p and each article list a corresponds to a multiset p and a of articles,
respectively, and each good w corresponds to an article fpwq;

– predicates are derived from the basics: ordering customers, sent orders,
copies ofsent orders, delivered goods, et cetera are predicates. A predicate
either applies or does not apply to an element of a set. Example: The pred-
icate sent orders applies to all orders that have been sent by customers but
have not yet been processed by the retailer.

11



Fig. 8: Heraklit multisets

We also use a number of variables for the different sorts. Basic and derived
sorts, as well as functions and predicates over these sorts, form a (Tarski) struc-
ture. Such structures form the basis for the formulation of dynamic behavior
with Heraklit behavior models.

(Tarski) structures are also the semantic domain for which predicate logic
formulates statements. Predicate logic and temporal logic are then close to the
formulation and proof of properties of Heraklit models.

Figure 9 depicts the structure and variables we will use to describe the case
study below.

IV Distributed runs

Customers submit purchase orders to the retailer and receive deliveries from
them; the company reorders any out-of-stock items from a supplier, it assigns a
freight forwarder to deliver freight from the supplier to the customer, et cetera.
Such behavior, composed of individual events that are considered elementary, is
described in Heraklit behavioral modules.

9 Local states and events

In the natural sciences and engineering, the behavior of a system is very often
modeled as a continuous process along a time axis of real numbers. Here we
understand behavior fundamentally differently: The behavior of a system is de-
scribed by local states, which are updated by discrete events. The result of an
event can be the cause for further events.

12



Fig. 9: the Heraklit structure S of the retailer

Fig. 10: event Ute sends order tp1, p2, p2u

The description of local states is based on predicates (see section 7): A local
state is a predicate p together with an object o. Dynamics is created when the
object o reaches the local state; then p applies to o. If o leaves the local state,
p does no longer applies to o. Reaching and leaving local states is synchronized
by the occurrence of events: Some objects reach or leave some local states.

A typical example is the ordering of items: For example, when the customer
Ute submits an order, she leaves the local state ordering customers and the or-
der reaches the two local states submitted orders and copies ofsubmitted orders.
Figure 10 graphically represents the event Ute submits purchase order tp1, p2, p2u:
Each of the three ellipses represents one of the involved predicates together with
the corresponding object to which the predicate applies. The rectangle t contains
the name of the event. An arrow between an ellipse and the rectangle indicates
whether the object leaves (arrowhead on the rectangle) or reaches (arrowhead
on the ellipse) the corresponding local state when the event occurs.

13



Fig. 11: event Ute receives message: delivery arrives on Christmas

Fig. 12: composition: merging of local states

Formally the event Ute submits purchase order tp1, p2, p2u has the structure
of a net : each ellipse is a place, the rectangle is a transition, and the arrows form
the flow relation.

Two events e and f can be composed to e ‚ f , if an object o reaches a
local state p by occurrence of e and then leaves it with occurrence of f . As an
example, figure 11 shows the event Ute receives message. As shown above, the
order pUte, tp1, p2, p2uq reaches the local state purchase order copies (p. order
copies) with the event Ute submits purchase order lbracep1, p2, p2u and leaves
with the event Ute receives message. The two events are composed by merging
the two instances of the local state purchase order copies as shown in figure 12.

As with a single event, the composition of two events has the structure of a
net, consisting of places, transitions and arrows.

10 Distributed runs of modules

The composition of several events describes complex behavior ; a run is created.
The composition in figure 12 describes an initial part of a possible run of the cus-

14



Fig. 13: a run of the module customers

tomer module. Figure 13 adds this initial part to a complete run of the customer
module. A module can behave in different ways; for example, the customer Ute
can choose between very different article lists for her order.

For the run of the module order management in figure 14 no order is assumed
in which the confirmations of the reservation of the article positions reach the
module or in which the module orders the two parcels. However, the customer
will be notified only after it has been ensured that the retailer has the appropriate
goods in stock for each item position ordered.

The inventory management module must answer a request for two pairs of
shoes and a request for two hats. In the run shown in figure 14, we assume that
the list of available goods of the retailer indicates three pairs of shoes and one hat
in stock (this list is briefly, and without technical precision, called a database).
Thus, a hat must be obtained from the supplier.

The figure 16 shows that the warehouse receives two hats from the supplier
and reports this delivery to inventory management. In the run shown, two orders
are completed: The first order includes one of the two delivered hats as a parcel
and transfers the parcel as freight to the freight forwarders. For the second order,

15



Fig. 14: a run of the module order management

two pairs of shoes and a hat are in stock; they are packed and transferred to the
freight forwarders.

As shown in the figure 17, the supplier receives the order for two hats from
inventory management and delivers the hats to the warehouse. As figure 18
shows, the two parcels are delivered independently to the customer Ute.

11 Composition of the runs of the modules: a run of the retailer

In section 10 we have seen how individual events can be composed to represent
a possible behavior of each of the six modules. Now we compose the behaviors of
the modules into a run of the retailer. This run starts with a customer’s order,
continues through all six modules, and finally returns to the customer with the
delivery of the ordered goods. Figure 19 shows the composition of the processes
of the six modules from section 10. Two problems arise: First, the graphical
arrangement of the interface elements to be merged generally does not match.
Second, some interface elements whose labels do not match should be merged.
Technically, we organize this with adapter modules, graphically represented as a
line with a black square, denoted as modules p1-shoes2 and p2-hat1 respectively.

As a graph, figure 19 is acyclic: No arrow chain closes to a circle. Some events
are thus ordered in a “before-after” relationship: If an event e precedes an event
f by a chain of other events, then f is certainly not before e. However, two events
may occur side by side with no ordering. This semi-ordering is clearly illustrated
by the arrangement of the nodes of the overall run in figure 20: Each arrow runs
from left to right, but now parts of individual modules are no longer arranged

16



Fig. 15: a run (consisting of two parts) of the module inventory management

locally directly together. The colored background shows the contributing module.
The flow of some modules is divided into several parts. Occasionally the left/right
orientation of interface elements of the modules is swapped.

V Predicates and event schemata

In the fourth part we presented one particular run, an example of behavior of a
retailer, where the customer Ute sends an order with the article list rp1, p2, p2s.
This is now to be put in more general terms: there are infinitely many possible
article lists for an order from Ute; besides Ute, Max can also submit purchase
orders; at the beginning, the three articles, namely, hats, shoes, and pants can
be available in the warehouse in different quantities, and order management has
many different possibilities to put together parcels. Thus, there are infinitely
many possible runs. All these runs shall now be formulated in one representation.
The idea here is to combine events with the same predicates.

17



Fig. 16: a run of the module warehouse

Fig. 17: a run of the module supplier

12 Events with equal predicates

First, we represent the event Ute submits purchase order tp1, p2, p2u from figure
10 differently: as figure 21 shows, the two configurations before and after the
event are represented in two different graphs. In figure 21b, the left place does
not represent the local state, which consists of the predicate ordering customers
and the customer Ute, but instead represents the predicate ordering customers.
That this predicate applies to Ute is then shown by the token “Ute” within the
ellipse. Accordingly, the predicates sent orders and purchase order copies show
that both predicates do not apply to any objects before the event. Figure 21c

18



Fig. 18: a run of the module freight forwarders

Fig. 19: composition of the runs of the modules: a run of the composed modules
(figure is optimized for reading on an electronic device)

Fig. 20: the run, shown from left to right (figure is optimized for reading on an
electronic device)

shows the situation after occurrence: the predicate ordering customers now does
not apply to any object; the predicates sent orders and purchase order copies
now both apply to the object pUte, tp1, p2, p2uq. From figure 21b alone, one can
derive figure 21c: Intuitively formulated, the label on each arrow determines
which objects “flow through” the arrow when the event occurs. Thus, figure 21b
represents the same behavior as figure 21a.

19



(a) repetition of figure 10: illustration of an event
with statements

(b) illustration with predicates: before
the occurrence of the event

ùñ

(c) illustration with predicates: after
occurrence of the event

(d) illustration with variables: before
the occurrence of the event

ùñ

(e) illustration with predicates: after
the occurrence of the event

Fig. 21: transition from local states to predicates

In a further step, we replace the arrow labels with variables (figures 21d and
21e), and explain the assignment of the variables in a label of the transition.
The representation in figure 21d also represents the behavior of figure 21a.

Figure 22 illustrates the advantage of the new representation. Part 22b shows
three different orders: two from Ute and one from Max. Part 22b represents these
three orders in one schema. The core of the representation is the variables k and
X. They can be assigned with concrete objects: k with a customer (Ute or
Max), X with an article list. Three of these assignments fulfill the label of the
t transition. Each of them represents one of the three events in figure 22a.

Thus, variables and conditions in the transition t can be used to characterize
a set of orders. Particularly simple is the characterization of all orders which

20



(a) three events represented with
statements

(b) Common representation of the
three events with predicates

Fig. 22: representation of events using predicates

Fig. 23: activated transition receive messages

are possible in the given structure: for this purpose any additional condition is
omitted.

Figure 23 shows how customers deal with messages from the retailer. The
delivery date of the last partial delivery for an order is communicated to the
customer: The transition occurs when the variables k and X can be assigned to
a customer k0 and an order list X0 in such a way that pk0, X0q is a token lying

21



(a) event of the supplier (b) use of the function f

Fig. 24: system functions

on the place purchase order copies and for any date d0 the token pk0, X0, d0q
lies on the place messages. In figure 23 k, X and d are assigned by tokens
Ute, pp1, p2, p2q and 12{24.

13 Functions

Figure 24a repeats figure 17: The supplier receives the item (“hat”,2) and delivers
the multiset rhat, hats. We need a general principle to derive a multiset of goods
from an article position. For this we use a function that assigns an article to
each good. In our case study this is the function f with fphatq “ “hat” and
fpshoesq “ “shoes”. In general, f is not injective; for example, a car rental
company could offer small, medium, and large vehicles, three types of goods,
but has many real vehicles. Each is small, medium or large.

To schematically characterize the supplier event, figure 24b uses the variable
w for the goods to be delivered and the variable p for their number. The single-
element multiset rws with the factor p yields the multiset p‚ rws, which contains
p instances of the goods w. The function 1 returns the corresponding articles
for an item or article list.

14 Loops

It can happen that during an event an object leaves a local state and another
(or the same) object reaches a local state with the same predicate. An example
of such a predicate is the inventory management database, which is shown again
in figure 25a. In a schematic representation, each predicate occurs only once.
Therefore, in figure 25b a loop is created between the space database and the
transition confirm availability.

22



(a) event of the inventory
management in the exam-
ple process

(b) schematic diagram

Fig. 25: event and associated schematic representation with a loop

15 elm notation

In the previous examples of schematic representations of events, at most one
object leaves or reaches a place. This is not always the case. For example, the
event decompose order in the module order management generates three local
states with the predicate requested reservation (Figure 26a). Therefore, in the
schematic representation (figure 26b) the three objects p1, p2, p2 are located on
the arrow towards the place requested reservation. When disassemble purchase
order (disassemble p. order) occurs, the three objects reach this place at the
same time. When using the variable X with the assignment X “ rp1, p2, p2s, the
arrow label X would place the set rp1, p2, p2s as one token on the place instead
of the three tokens p1, p2, p2, that is, the elements of this set (Figure 26c). The
notation elmpXq ensures that after decompose order the elements of the set X
reach the place requested reservations, and not the set itself. The same applies
to the place copy position and the arrow ending there.

As another example, figure 27 shows how partial deliveries are compared
with the order and accepted as a complete delivery: In figure 27a we assume two
partial deliveries. First, an incoming delivery is opened and each of the goods

23



(a) event in module ordermanagement

(b) the same event in schematic view

(c) the same event with variables in mode k “ Ute,X “ tp1, p2, p3u

Fig. 26: the use of elm

is individually marked with the customer Ute (figure 27b). After the second
partial delivery, there are four goods on the place delivered goods (figure 27c).
The quantity of these goods is assigned to the variable Z; fpZq indicates the
quantity of the ordered articles. This quantity is derived with X 1 from the article
list X “ rp1, p2, p2s. With this, the condition in the transition is fulfilled, the
transition occurs and the complete delivery is accepted (figure 27d).

24



(a)

(b)

(c)

(d)

Fig. 27: receive goods

VI The retailer for the structure S

We now have all the means of expression at our disposal to model all aspects
of the case study. In the logic of an order and its processing, we start with the
customer model. Then we follow with the three departments of the retailer (order
management, inventory management and warehouse) and finally the two other
business network partners: the supplier and the freight forwarders. The models
are based on structure S, which was presented in section 8, figure 9.

25



Fig. 28: the module customers

16 The customer model

Figure 28 shows the module customers. With the set K “ tUte,Maxu from the
structure S, the two tokens Ute and Max are located at the beginning in the
place ordering customers. We have already discussed the transitions in detail.
In the context of the other modules, figure 29 shows a reachable marking from
which Ute receives a message with the delivery date (12{24) and then receives
and accepts the entire delivery in two partial deliveries, as discussed in figure
27. Independent of this, Max can submit a purchase order.

26



Fig. 29: a reachable marking of the customer module in the context of all modules

17 The order management model

We have already discussed the transition decompose order of the order manage-
ment (Figure 30) in figure 26. The order management asks for a confirmation of
the availability of each individual order item. This can be delayed if, for example,
some units have to be reordered from the supplier first. As soon as some order
items have reached the place confirmation of availability, the order management
assigns the warehouse a corresponding partial delivery. The order items sent in
partial deliveries are collected on place C; when all items of an order are as-
signed to partial deliveries, the transition notify customer sends a message to
the customer with the scheduled date for the last partial delivery of the order.
Technically, the order management can assign any date to the variable t.

18 The inventory management model

In the inventory management model (figure 31), the entries of the article list G
in place A describe, for each ordered article, the number of matching available
goods in the warehouse, initially three pairs of shoes, a hat and no shirts. If there
are at least n units available in the warehouse for a requested order item pa, nq,
transition a releases n units for a partial delivery. If not, transition b orders the

27



Fig. 30: order management queries availability of goods and orders partial deliv-
eries

n units of the article a from the supplier as well as a stock of a further p units.
By defining p as a variable, inventory management can freely decide the amount
of stock for item a for each reorder. If p were declared as a constant, the S
structure would set the stock level for the item a indefinitely.

When the request to restock an item triggers an order to the supplier, the
request is kept on place B until the warehouse has confirmed receipt of the units
from the supplier. The transition c then passes this confirmation to the order
management and updates the information about the stock in place A. Place
A thus describes for each item how many units have not yet been reserved for

28



Fig. 31: inventory management confirms the availability of article

delivery in the warehouse. Here, one can see a subtle difference between one
large order quantity and several small order quantities of a particular item: If,
for example, three shirts are available and one order requests four shirts, that
whole request is held back on place B until the supplier has delivered more
shirts. If, instead, two orders requesting two shirts each are made, one of them is
confirmed immediately and in a partial delivery the customer can already receive
the first two shirts before the supplier delivers the other shirts to the warehouse.

19 The model of the warehouse

The warehouse in figure 32 has two tasks: for each incoming order it packs a
freight parcels for the freight forwarders; furthermore, the warehouse processes
the incoming deliveries from the supplier. For the first task, the transition a
breaks down an incoming article list into its items. From the item pa, nq of an
article a, which is ordered in quantity n, the transition b then creates n tokens
of the type a: first, n‚ ras creates the multiset containing n instances of the type
a. With elmpn ‚ rasq, each of its n elements then becomes an individual token.
For each of these tokens a, the transition c takes a good w from the warehouse
C, which corresponds to a, to which it therefore applies that fpwq “ a. This
commodity is put on place D.

For the second task the transition d receives a parcel m‚rws from the supplier
with m instances of the good w. The instances are individually stored in the
warehouse (elmpm ‚ rwsq is used to create m tokens of the type w). At the same

29



Fig. 32: warehouse packs freight parcels and confirms the goods sent by the
supplier

Fig. 33: supplier sends corresponding goods for each order

time, inventory management is informed about the receipt of the goods: fpwq
describes the article of the goods w, pfpwq,mq also the quantity.

Place C represents the actual stock; it initially contains the elements of the
multiset H, that is three pairs of shoes, a hat and no shirts. This corresponds
to the initial marking elmpGq of place A of the inventory management.

20 The supplier model

Figure 33 shows how the supplier receives a supplier order and selects an item
w that matches the ordered item fpwq. The supplier then transports a package

30



Fig. 34: freight forwarder delivers freight parcels

Fig. 35: model of the retailer, composed of six modules (figure is optimized for
reading on an electronic device)

of p instances of this item to the goods receiving area of the warehouse (token
p ‚ rws). In this model, the supplier can always deliver; of course, it is possible
to model other assumptions here.

21 The model of the freight forwarders

The model of the freight forwarders in figure 34 is obvious: There is a basic type R
of freight forwarders. Initially, the place A contains some freight forwarders. The
variable s is used to select a freight forwarder. This module provides a starting
point for further assumptions regarding the selection of freight forwarders.

All modules of the case study are now modeled. The models can be composed
as shown in figure 35. This creates the model of the retailer for the structure S.

VII The case study model

In the model shown in figure 35 the basic sorts and basic functions, which are the
customers, goods, initially available goods, assignment of articles to goods, and
the freight forwarders are fixed. A model that includes all possible basic sorts
and basic functions would be interesting. Furthermore, the model itself should
be purely symbolic, so it should not work with specific quantities and functions
like the models in section VI, but with symbols for quantities and functions.
Then the model can be processed with software tools.

Here we can again take up proven concepts of predicate logic and many
specification languages: We construct a signature Σ for the retailer. The basic
idea is simple: Σ contains a symbol for each basic sort, each derived sort, each
constant and each function. An instantiation of the signature assigns a matching

31



Fig. 36: Signature Σ

set or a function to each such symbol. Figure 36 shows such a signature. An
instantiation then assigns a set, object or function to each symbol according to
its type. The structure S is an instantiation of the signature Σ.

To describe the behavior of instantiations, we can use the nets from part VI as
they are. This is because these nets do not use specific aspects of the instantiation
S; for example, the initial marking of the place ordering customer is not labeled
with Ute andMax, but elmpKq. The instantiation S then results in Ute and Max
as the initial marking of the place ordering customers. Somewhat more difficult is
the general formulation of the relationship between stored positions of available
items in inventory management and the available goods in the warehouse: The
function f , which can be freely chosen, describes which different goods fulfill an
ordered item request.

32



(a) perspective of the customer

(b) perspective of the supplier (c) perspective of the freight forwarder

Fig. 37: perspectives of the business network partners on their respective envi-
ronment

The concepts and notations are chosen according to the specification language
Z. Z offers concepts for composition, import et cetera of specifications. The
very rudimentary concepts for describing dynamic behavior in Z are replaced by
Heraklit with its sophisticated behavior models. While predicate logic deals
with properties of structures, Heraklit describes the dynamic modification
of structures, particularly the extension of predicates. Thus, Heraklit is the
natural dynamic extension of static predicate logic.

VIII Further perspectives on the retailer

22 Abstract environments for behavioral models

There are a number of other perspectives on the retailer and its business network
partners. For the behavioral module of each partner there is an abstract module,

33



(a) flow of orders and goods

(b) module orders

(c) module flow of goods

Fig. 38: modules of orders and flow of goods (figure is optimized for reading on
an electronic device)

its environment, so that the composition of both modules results in the overall
module. Figure 37 shows the behavior of the retailer’s three business network
partners in their respective environments.

23 Module for orders and flow of goods

Figure 35 composes the six modules involved in the retailer and thus describes
the behavior of the entire system in a structured way: The components remain
recognizable. However, the overall module can also be structured differently. Fig-
ure 38a separates that part of the model which represents real physical objects,
namely goods, from the part that organizes abstract data of the orders. This
separation leads to the two modules in figure 38b and 38c. Their composition
again results in the overall module in figure 38a. It therefore holds that:

overall behavior “ orders ‚ flow of goods.

Appendix

24 Theoretical, conceptual and methodological foundations

The central concept of a Heraklit module combines three proven, intuitively
easy to understand and mathematically well-founded techniques, which are al-
ready used for the specification of systems:

34



1. abstract data types and algebraic specifications for the formulation of con-
crete and abstract data: Since the 1970s, such specifications have been used,
built into specification languages, and often employed for (domain-specific)
modeling. These include the older languages VDM and Z [9], [2], the rich
language RAISE [6], [1] and many other languages. [10] tries to standard-
ize the core of the field with the Common Algebraic Specification Language
CASL. Very systematically, the book [15] presents the theoretical founda-
tions and some fields of application of algebraic specifications. Abstract State
Machines (ASM) [7] belongs to the same context: Starting with a signature
Σ there are global states; each state is an instantiation of Σ. A step is
typically a conditional value assignment to a variable or term whose value
is updated this way. Similarly, Heraklit describes states, but local state
components, with instantiated basic types. For a type A or a function f of
an instantiation, a local state component is a subset or a single element of
A, or a tuple of the form pa, fpaqq.

2. Petri nets for the formulation of dynamic behavior : Heraklit uses the cen-
tral ideas of Petri nets: A step of a system, especially a large system, has
local limited causes and effects. This allows one to describe processes without
having to use global states and globally effective steps. This concept from
the early 1960s [11] was generalized in the early 1980s with predicate logic
and colored tokens [5], [8]. The connection with algebraic specifications is
established by [12]. Heraklit adds two crucial aspects to this view: unin-
terpreted constant symbols for sets in places that use the elm notation to
cover instantiations with many possible initial tokens, and the elm notation
in arrow labels to describe flexible token flow.

3. The Composition Calculus for Structuring Large Systems: this calculus, with
its widely applicable associative composition operator, is the latest contri-
bution to the foundations of Heraklit. The obvious idea, often discussed
in the literature, to model composition as a fusion of the interface elements
of modules is supplemented by the distinction of left and right interface el-
ements. The composition A ‚ B is defined as a fusion of the right interface
elements of A with the left interface elements of B. According to [13], this
composition is associative (in contrast to the näıve fusion of interface ele-
ments); it also has a number of other useful properties. In particular, this
composition is compatible with refinement and abstraction and with dis-
tributed runs. Further details and examples are discussed in [14] and [3].

These three theoretical foundations harmonize with each other and generate
further best practice concepts, which contribute to a methodical approach to
modeling with Heraklit, and which are only touched upon in this paper. These
include in particular the notion of an adapter : An adapter for two modules A and
B formulates criteria and properties for the composition of A and B as another
module C, so that A‚C‚B guarantees the desired properties. Further details are
described in [14] and in the Heraklit manual. The methodical, systematic use
of the composition of abstraction and of distributed runs will be demonstrated
in future case studies.

35



References

1. D. Bjørner. Domain Science & Engineering: A Foundation for Software Develop-
ment. Unpublished manuscript (2020).

2. J. P. Bowen. Z: A formal specification notation. In Software specification methods,
pages 3–19. Springer, 2001.

3. P. Fettke and W. Resig. Modelling service-oriented systems and cloud services
with Heraklit. CoRR, abs/2009.14040, 2020. presented at the 16th International
Workshop on Engineering Service-Oriented Applications and Cloud Services, Her-
aklion, Greece, September 28-30, 2020.

4. P. Fettke and W. Resig. Modellieren mit Heraklit – handbuch (in vorbereitung).
2021.

5. H. J. Genrich and K. Lautenbach. The analysis of distributed systems by means of
predicate/transition-nets. In G. Kahn, editor, Semantics of Concurrent Computa-
tion, Proceedings of the International Symposium, Evian, France, July 2-4, 1979,
volume 70, pages 123–147. Springer, 1979.

6. C. George. The NDB database specified in the RAISE specification language.
Formal Asp. Comput., 4(1):48–75, 1992.

7. Y. Gurevich. Evolving algebras 1993: Lipari guide. In E. Börger, editor, Specifica-
tion and validation methods, pages 9–36. Oxford University Press, 1993.

8. K. Jensen. Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use - Volume 1. Springer, 1992.

9. C. B. Jones. Systematic software development using VDM. Prentice Hall, 2 edition,
1991.

10. T. Mossakowski, A. E. Haxthausen, D. Sannella, and A. Tarlecki. Casl - the
common algebraic specification language: Semantics and proof theory. Comput.
Artif. Intell., 22(3-4):285–321, 2003.

11. C. A. Petri. Kommunikation mit Automaten. PhD thesis, Technische Hochschule
Darmstadt, 1962.

12. W. Reisig. Petri nets and algebraic specifications. Theor. Comput. Sci., 80(1):1–34,
1991.

13. W. Reisig. Associative composition of components with double-sided interfaces.
Acta Informatica, 56(3):229–253, 2019.

14. W. Reisig. Composition of component models - a key to construct big systems.
2020. in press.

15. D. Sannella and A. Tarlecki. Foundations of Algebraic Specification and Formal
Software Development. Springer, 2012.

36


	Heraklit case study: retailer 

