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Abstract. Modern and next generation digital infrastructures are tech-
nically based on service oriented structures, cloud services, and other
architectures that compose large systems from smaller subsystems. The
composition of subsystems is particularly challenging, as the subsys-
tems themselves may be represented in different languages, modelling
methods, etc. It is quite challenging to precisely conceive, understand,
and represent this kind of technology, in particular for a given level of
abstraction. To capture refinement and abstraction principles, various
forms of “technology stacks” and other semi-formal or natural language
based on presentations have been suggested. Generally, useful concepts
to compose such systems in a systematic way are even more rare. Her-
aklit provides means, principles, and unifying techniques to model and
to analyze digital infrastructures. Heraklit integrates composition and
hierarchies of subsystems, concrete and abstract data structures, as well
as descriptions of behaviour. A distinguished set of means supports the
modeler to express their ideas. The modeller is free to choose the level
of abstraction, as well as the kind of composition. Heraklit integrates
new concepts with tried and tested ones. Such a framework provides the
foundation for a comprehensive Systems Mining as the next step after
Process Mining.

Keywords: systems composition · data modelling · behaviour modelling
· composition calculus · algebraic specification · Petri nets · Systems
Mining

1 Introduction

The development of big service-oriented systems is challenging. Traditionally,
models have been a central tool for designing such systems. Currently used
modelling methods reach their limits and should be replaced by better concepts.
The currently prevailing way of developing service-oriented systems is unsatis-
factory in many aspects. The development process and its result must be: (a)
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more manageable for the developer, (b) easy to understand for the user, (c) less
error-prone and verifiable, (d) easier to change, faster reachable and cheaper es-
pecially for really large systems. These and similar requirements have long been
discussed in the relevant literature.

The development of a complex service-oriented system is always preceded
by a planning process in which models are used to formulate the structure,
function, intended effects etc. of the intended product. In comparison to other
engineering disciplines, models are generally not used very often in computer
science and business informatics. This is mainly due to the fact that up to
now not much benefit can be derived from models. In the practice of system
design nowadays mainly diagrams using the Business Process Modeling Notation
(BPMN) are propagated for describing the business logic. Such diagrams are
limited to the identification of elementary activities and the representation of the
control flow. More comprehensive models that take more aspects into account
and are more intuitive would be extremely helpful for computer science and
business informatics.

We argue for a modelling method whose models are suitable for much more
than just the representation of elementary activities and control flows. In partic-
ular, a good modelling method should meet the requirements mentioned above.
From a more technical point of view, such a method should:

– support the structuring of a large service-oriented systems into modules;
– technically simple, but expressive to compose modules to large service-oriented

systems;
– describe the discrete steps in large systems only locally in individual modules;
– represent modules intended for implementation and modules not intended

for implementation integrated with the same concepts;
– represent data and consider data dependencies in the control flow;
– abstract from concrete data in order to create instantiations with the same

behavior in a schematic way;
– add under-specified data aspects in the later design process or in the event

of changes of the system systematically;
– describe activities and events at any level of abstraction and hierarchy levels;
– generate models that are scalable, changeable and expandable;
– support the proof that a model has desired properties;
– extend the proven techniques of Data Mining and Process Mining to general

Systems Mining.

In this paper we propose Heraklit as a modelling method that meets these
requirements. It combines proven mathematically based and intuitively easy to
understand concepts that are already used for system specification; we recombine
them and complement them with concepts for composition and hierarchical re-
finement of local components, making this technique suitable for modeling large
operational systems.

The objective of this paper is to present an overview on Heraklit. Therefore
we shortly introduce the central modelling principles in Section 2. Section 3
presents a concise case study using Heraklit. The paper closes with a disucssion
of related work (Section 4) and some conclusions (Section 5).
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2 Principles of Heraklit

2.1 Big systems

What are the implications of the statement that a system is “big”? Firstly, some
concepts that suit “small” systems do not suit large systems. One of the most
obvious of these concepts is the assumption of global states and steps that update
global states [17]. Global states and steps adequately describe, for example, the
behaviour of s small digital circuit. To describe the behaviour of stakeholders of
a business as a sequence of global steps, is, however, conceptually not adequate.
In a big system, e.g. a business, cause and effect of a step are locally confined;
and this confinement is essential to understand behaviour. As another specific
concept, a big system requires conventions to confine validity of names, i.e. to
avoid globally valid names, with a few exceptions such as URLs.

In Heraklit, single behaviours (runs, executions) of a subsystem can be
represented by means of states and steps that are global only within the sub-
system. Upon composing two such systems, those local states and steps are
not necessarily embedded into global states and steps of the composed system.
Instead, single behaviours of the composed system are represented without as-
suming global states and steps. Local names of a subsystem are confined to the
subsystem and its direct neighboring subsystems.

2.2 Composition of systems

Every “big” real life system is composed from subsystems that are mutually re-
lated: they may exchange messages or jointly execute activities. The composition
of subsystems is particularly challenging, as the subsystems themselves may be
represented in different languages, modelling methods, etc.[6] Modelling tech-
niques for such systems must provide means to compose models of subsystems.
Many modelling techniques provide such means; they all come with specific, fre-
quently parameterized composition operators, concentrating on special ways to
exchange data, e.g. synchronously or asynchronously. A “big” system, composed
from many systems S1, . . . , Sn, is favorably written

S = S1 • · · · • Sn, (1)

with “•” being any version of a composition operator. This bracket free nota-
tion requires that the composition operator is associative, i.e. that for any three
models R, S, T hold: (R•S)•T = R• (S •T ). Typical examples for the notation
(1) include supply chains, sequences of production machines in a factory, etc. As-
sociativity of composition is rarely discussed explicitly, but frequently assumed
without saying [16].

Heraklit offers a simple, universally employable and associative composi-
tion operator. In Heraklit, the diversity of specific, parameterized composition
operators is expressed by help of adapters: Specific aspects and properties of the
composition R • S of two models R and S are formulated in an adapter A, such
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that R•A•S expresses the wanted properties. The advantages of this concept are
obvious: One technical composition operator fits all content-wise requirements,
adapters can themselves be composed, etc.

2.3 Abstraction and refinement

A number of general principles has been proposed in literature, to adequately
cover the abstraction and refinement of systems. In particular, it is most useful
to start out with an abstract specification and to refine it systematically, such
that properties of the refined system imply the relevant properties of the abstract
system. Vice versa, a given system may be abstracted, yielding a more compact
version.

Abstraction and refinement should harmonize with the composition. To refine
a part T of a system S, one would partition S into T and the environment of
T , and then refine T . The remaining subsystems in the environment of T should
not be affected by this procedure. Systems on different refinement levels should
be composable; an overall concept of hierarchy levels for subsystems should not
be required. Heraklit suggests concepts for refinement and abstraction that
respect these requirements.

2.4 Modelling of data and things equally

In a big system, data, physical items, algorithms, activities of persons, steps of
organizations, etc., are entangled. They must be modelled by similar means that
differentiate between them only in pragmatical aspects: data can be generated,
deleted, transformed into different representations, manipulated by computers,
copied, updated, composed, etc. Physical items behave differently: A physical
item always occupies a distinguished place in space. In models, one frequently
does not want to distinguish “equal” items explicitly; their number matters.

2.5 Behaviour

The behaviour of a large system is composed of single actions. An action up-
dates some local state components. It is up to the modeler to embed local state
components into more global views, if wanted. For a really large system, a single
execution (run) should not be represented as a sequence of actions (though one
may argue that all behaviour occurs along a global time scale). Independence of
actions should explicitly be represented and not be spoiled by representing them
in an arbitrary order.

Heraklit suggests to base the description of behaviour on Petri nets with
data carrying tokens [15]. This choice is motivated by multiple aspects:

– Petri nets can easily be specialized to include interfaces: Just select some
places, transitions, and even arcs to serve as interface elements.

– The composition of Petri nets with interfaces is again a Petri net with inter-
faces.

– Petri nets suggest the notion of concurrent runs that partially order actions
of a run, thus, avoiding them to be mapped onto a global time scale.
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2.6 Describing systems on a schematic level

Data, real life items, as well as entire systems must be describable on an abstract,
schematic level. In particular, it must be possible to describe just the existence
of data, items, functions, etc., without any concrete description of how they
look like, how many of them there are, etc. On this schematic level, it should
be possible to describe activities in systems, e.g. the principles of executing a
clients order of an enterprise. A concrete enterprise is then an instantiation of
the schema.

Heraklit provides techniques to model such schemata, and to characterize
concrete enterprises as instantiations of such a schema. Here, we adapt notions
such as structures, signatures and instantiations of signatures, that are well-
known from first order logic and algebraic specifications. (Technically, a signature
is just a set of sorted symbols for sets, constants, and functions. An instantiation
interprets these symbols consistently). We extend signatures by requirements to
exclude “unwanted” instantiations, in the spirit of specification languages such
as the Z language.

Signatures and their instantiations can naturally be transferred to define
Petri net schemata we call them Heraklit schemata. Such a schema can be
instantiated in different ways; each instantiation results in a concrete Petri net.
This concept is useful to model, for example, not just a distinguished business,
but a class of businesses that all follow the same business rules. Hence, Herak-
lit strongly supports the idea of reference modelling, a core topic of business
informatics [13].

2.7 Verification

The notion of correctness has many implications for big systems. Some ideal
properties of a big system can be composed of corresponding properties of the
component systems. Not all relevant properties can formally be captured, yet
they deserve a proper framework to reason about them. Particularly interesting
are methods to prove properties at run-time.

Heraklit integrates a number of formal and semi-formal verification tech-
niques to support structured arguments about the correct behaviour of modules.

3 Modules and their composition

3.1 Modules

In Section 1 we discussed a number of principles that are inevitable for modelling
big systems: no globally effective structures, associative composition of models
of any two systems, composition must be compatible with abstraction, modelling
of data and real items, modelling of behaviour, parameterized models. Now we
must model systems in such a way that all these principles are met.

We start out with the obvious observation that a real system in general
consists of interdependent subsystems. This paves the way for the central notion
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of Heraklit-modules: A Heraklit module is a model, graphically depicted as
a rectangle, with two decisive components:

– Its inner: this may be any kind of graph or text. Three variants are frequent:
(a) the inner consists only of the name of the module, (b) it consists of
(connected) submodules, (c) it describes dynamic behaviour.

– Its surface: this consists of gates, each gate is labelled, i.e. inscribed by a
symbol. The gates of the surface are arranged on the surface of the mod-
ules rectangle. Alternatively, each gate is represented as a line, linking the
modules rectangle with the gates label.

The following Fig. 2 shows typical Heraklit modules.

3.2 Composition of modules

Composing two modules A and B follows a simple idea: two equally labelled
gates of A and B are glued and turned into an inner element of the module
A•B. However, in this simple version, the composition is fundamentally flawed:
Upon composing three or more modules, the order of composition matters: for
three modules A, B, and C, the two modules (A•B)•C and A•(B•C) differ from
one another. In technical terms: this version of composition is not associative.
But associativity is a central requirement, as discussed in Chapter 1.2.

To solve this problem, we return to modules shaped S = S1 • · · · • Sn. As
discussed in Sec. 1.2: each module Si generally has a left and a right neighbor
(S0 has no left, Sn has no right neighbor). S is composed by composing Si−1

with Si (for i = 2, . . . , n). In the real world, systems frequently exhibit this kind
of structure, physically or conceptually.

Therefore, Heraklit partitions the surface of a module L into its left and
right interface, written ∗L and L∗, resp. To compose two modules L and M ,
equally labelled gates of L∗ and ∗M are glued and turn into inner elements of
L•M . The remaining elements of L∗ go to (L•M)∗ (together with M∗), and the
remaining elements of ∗M go to ∗(L •M) (together with ∗L). Most important:
A general theorem guarantees that this kind of composition is associative [16].

4 Case study: a service system

4.1 The different modules of the system

Today, many organizations offer a complex service portfolio for their customers
or clients [3,4]. Typical examples are banking or financial services, insurance
services, legal services, and the medical or health services offered by a hospital
or a medical center.

Here, we model the organization of such a service system, serving clients, cus-
tomers, or patients that want confidential consultation about particular services
or a particular treatment, provided by experts.

Fig. 1 shows the signature of the system: there are five sorts of elements
in a service system, indicated by C, E, R, A, and S. Their intuitive meaning
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Fig. 1: Signature of the service system

is indicated in italic. In a concrete service system, there are sets of experts,
available consulting rooms, and admins, symbolically represented by EX, RO
and AD. Their type is P (E), P (R), and P (A), resp., with P (·) standing for
“powerset”. Furthermore, we need a function symbol f and five variables, one
for each basic sort. An instantiation assigns each basic sort an arbitrarily chosen
concrete set, each constant symbol a set of elements of the indicated sort, and
f a function that assigns each service the set of experts that offer consultations
for this service.

Fig. 2a shows a module that represents the behaviour of clients: For every
instantiation of the variables c and s by a client and a service, resp., transition
a is enabled. Transition a represents the policy that any client may enter the
service system with any kind of wish for consultation for a service s. Hence,
place A may eventually hold any number of tokens, with each token consisting
of a client and a service. Transition b indicates the service systemss help desk,
accepting each clients wishes and asking them to wait at place B. There, a client
will eventually receive a message either at place C or at place D. A message
at place C indicates that no expert is available; so the client leaves the service
system along transition c. A message at place D indicates that the client should
proceed to the consulting room named or numbered r. The client will do so along
transition d and arrow E. He will later on return along arrow F and leave the
service system by transition e.

The module in Fig. 2b represents the behaviour of the service systems experts.
There is a set of experts, depicted as EX, fixed when the schema is instantiated,
and initially represented as unengaged at place G. One might expect this to
be expressed by the symbol EX at place G. However, this would indicate one
token at place G. This is not what we want: we want each single expert to be
represented as a token. This is achieved by means of the function elm: Applied
to a token that represents a set M , elm(M) returns each element of M as a
token. For an expert e, the message (e, r) arriving at place H indicates that e
must go to consulting room r, due to transition f and arc I. He will eventually
return along arc J , release room r, and will be again unengaged at place G.

The module in Fig. 2d shows the consulting rooms: A client c and an expert
e arriving at room r along the arcs E and I, resp., start their consultation by
transition h, end it by i, and leave the room by arcs F and J .
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(a) clients (b) experts

(c) admin

(d) consulting rooms

Fig. 2: The four modules of the system
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Fig. 3: Overall model of a service system
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The behaviour of clients, experts, and the consulting rooms must be properly
synchronized. The admin module of Fig. 2c organizes this. Place P initially
contains each admin as a token (we employ again the function elm as explained
above for the experts). An admin a engages with a client c and their request
for an expert for service s, along transition b. A token (a, c, s) on place Q then
continues either along transition k or transition j. Transition j requires an expert
e on place R, such that e offers the service s. The inscription of j indicates
this requirement. R always contains a digital twin for each expert that is not
engaged with a client. The place S always contains a digital twin of each empty
consulting room. Hence, transition j is enabled with proper instantiations of
all five variables a, c, s, e, and r. The occurrence of j then renders the admin a
available in P for new clients, sends messages to the client c, and the expert e
to proceed to room r, and moves the digital twin of e to place T . This way, the
digital twin of each expert e is either a token in R or in T . With e in T , the
expert e eventually indicates by transition g that they finished their consultation
and they release the room r. Finally, transition k manages the case where for a
token (a, c, s) no expert for service s is available in R. As discussed above, the
digital twin of each such expert is a token in T . Hence, all tokens in the set f(s)
of experts for s are in T . This is tested by means of the loop between k and
T . Occurrence of k then renders the admin a available in P for new clients and
sends a corresponding message to the client c. Notice the subtle treatment of
experts and rooms as a scarce resource: If no corresponding expert is available,
a client is turned away, as it may take too long until an expert for s is available.
But if no room is available, the client is just waiting as long as one room will be
available.

4.2 Overall model and abstract composition

Fig. 3 finally glues the four modules into one big module. In Heraklit, this can
just be written as: clients • admin • consulting rooms • experts.

Similarly, it is possible to construct an abstract composition of the system.
Fig. 4 depicts such a composition of the four abstract modules by using the
abstraction operator [·], which deletes the inner structure of a module. Formally
written as: [clients] • [admin] • [consulting rooms] • [experts].

5 Related work

Modelling is typically understood as an interdisciplinary field that is used in
many different disciplines as a method or instrument to capture knowledge or
to assist other (research) actions [6,2]. As we discuss above, Heraklit mainly
does not invent new modeling concepts but integrates proven and well-known
modelling approaches. Compared to other integrated approaches which currently
dominate the modelling practice, e.g. BPMN, Heraklit provides integrated
means to descrive model structure, data, and behaviour. In the central concept
of a module, Heraklit combines three proven, intuitively easy to understand,
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Fig. 4: Abstract composition of the overall model

and mathematically sound concepts that have been used for the specification of
systems in the past:

1. Abstract data types and algebraic specifications for the formulation of con-
crete and abstract data: since the 1970s such specifications have been used, built
into specification languages, and often used for (domain-specific) modelling. The
book [18] presents systematically the theoretical foundations and some applica-
tions of algebraic specifications. Abstract state machines [8] also belong to this
context.

2. Petri nets for formulating dynamic behaviour: Heraklit uses the central
ideas of Petri nets. A step of a system, especially a large system, has locally
limited causes and effects. This allows processes to be described without having
to use global states and globally effective steps. This concept from the early
1960s [12] was generalized at the beginning of the 1980s with predicate logic and
colored marks [7,10]. The connection with algebraic specifications is established
by [14]. Heraklit adds two decisive aspects to this view: uninterpreted constant
symbols for sets in places that use the elm function to hold instantiations with
many possible initial marks, and the elm function as an inscription for an arrow
to describe flexible mark flow.

3. The composition calculus for structuring large systems: this calculus with
its widely applicable associative composition operator is the most recent con-
tribution to the foundations of Heraklit. The obvious idea, often discussed
in the literature, of modeling composition as a fusion of the interface elements
of modules is supplemented by the distinction of left and right interface ele-
ments, and composition A • B as a fusion of right interface elements of A with
left interface elements of B. According to [16,17], this composition is associa-
tive (as opposed to the naive fusion of interface elements); it also has a number
of other useful properties. In particular, this composition is compatible with
refinement/coarseness and with individual (distributed) runs.

These three theoretical principles harmonize with each other and generate
further best practice concepts that contribute to a methodical approach to mod-
eling with Heraklit, and which will only be touched upon in this paper. On
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the down-side, industrially mature modelling tools for Heraklit are still under
development.

6 Conclusions

The presented case study clearly demonstrates how Heraklit provides an inte-
grated view on structure, data, and locally defined behaviour. Hence, Heraklit
covers all central aspects of every computer-integrated system. Such a descrip-
tion can be used for different purposes, e.g. business process management, service
engineering, software analysis, design, verification, and development. The used
techniques are well-known but combined in a novel and innovative way.

By providing such an integrated method for system specification, Heraklit
paves the way for many important innovations which are currently so much in
need [2,9]. In particular, we like to introduce the idea of Systems Mining. While
Data Mining and Process Mining [1] exploit the knowledge implicitly represented
in data tuples and event sequences, respectively, Systems Mining is able to ana-
lyze the structure, data, and behaviour of a system. For such analysis, Heraklit
provides the necessary techniques to specify all essential characteristics of a sys-
tem. The observed structure of the system can be represented as modules, the
observed data is captured by both concrete and abstract data structures, and the
observed behaviour is specified as (distributed) runs. Based on such a powerful
framework, Systems Mining provide a much richer picture of and deeper insights
into big systems.

The presented case study of a service system illustrates powerful possibilities.
Based on these Heraklit models, Systems Mining can answer a wide spectrum
of interesting questions: (1) Do typical communications patterns between the
modules of the system exist? (2) Which services are often requested by cus-
tomers? (3) Do customers follow particular patterns for requesting services? (4)
Which particular service requests and assignments of experts and rooms typi-
cally cause long waiting times for a customer? (5) Are there particular behaviour
patterns and service requests which typically cause customers to leave the service
system without getting a service or treatment?

Such questions and many more can easily be specified with Heraklit. Addi-
tionally, Heraklit provides a richer foundation for predictive and prescriptive
process management as well as deeper insights for explaining process behaviour
[5,11]. Hence, Heraklit lays the foundation for the next step after Process
Mining.
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